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LENNARD-JONES ELASTIC MODULI BY LIQUID
STRUCTURE INTEGRAL EQUATIONS
AND MOLECULAR DYNAMICS COMPUTER
SIMULATIONS

D. M. HEYES

Department of Chemistry, Royal Holloway and Bedford New College,
University of London, Egham, Surrey TW20 OEX, UK.

( Received 3 January 1989)

The infinite frequency shear modulus, G .., and compressional modulus, K ,, of the Lennard-Jones, LJ, fluid
have been determined over essentially the whole phase diagram at densities below the solid-fluid
coexistence line using PY, HNC, and Rogers and Young (RY) closures of the Ornstein-Zernike relation. At
low density PY is best at reproducing simulation G, and K ., whereas close to the coexistence line, above
the critical temperature, the RY closure is best and is remarkably accurate. Agreement is poorest for all
three closures below T, in the liquid phase.

KEY WORDS: Shear and bulk infinite frequency modulus, Lennard-Jones, integral equations,
computer simulations.

I INTRODUCTION

The infinite frequency shear, G, and bulk moduli, K , of single component fluids
play a central role in interpreting their viscoelastic behaviour!. The values of G, and
K, have been determined by Molecular Dynamics computer simulation and para-
meterised for a simple fluid such as the Lennard-Jones fluid?®. However no such
thorough study of the available integral equation methods has been made, to examine
how satisfactory they are in reproducing these moduli. The infinite frequency moduli
can be derived directly from the structure of the fluid at the level of the pair radial
distribution function, g(r). The Ornstein-Zernike equation is a path to g(r)*>,

h(r) = c(r) + p Jdr(:(lr = r'Dh(r), (1)

where p is the number density, <(r) is the direct correlation function and the total
correlation function, h(r), is,
h(r) = g(r) — 1, (2)
Defining y(r),
W) = h(r) — c(r), (3)
115
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Figure 1 Comparison between the pair radial distribution functions generated by MD (solid lines) and PY

(squares) at T = 1.06 and p = 0.731. N = 256 in the MD simulations.
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Figure 2 Comparison between the pair radial distribution functions generated by MD (solid lines) and

+

HNC (squares) at T = 1.06 and p = 0.731. N = 256 in the MD simulations.
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Figure 3 Comparison between the pair radial distribution functions generated by M D (solid lines) and RY
(squares) at T = 1.06 and p = 0.731. N = 256 in the MD simulations.

then Eq. (1) can be solved with an arbitrary closure relation. We will consider three
possibilities.

Percus-Yevick, PY

c(r) = (1 + y(r))exp(—B(r)) — 1),
= (1 + y(r))exp(—pp(r)) — 1 — ¥(r) )
where f = 1/(kyT) and ¢(r) is the interatomic potential. This closure has been the

subject of numerous treatments of the Lennard-Jones fluid®>~!%. Therefore, using Eqs.
(2) and (3) we have,

g(r) = (1 + y(r))exp(~ B&(r)). (5)
Hypernetted Chain*
o(r) = exp(—Bo(r) + v(r) — 1 — y(r), (6)
and
g(r) = exp(— p(r) + y(r)). Q)

Rogers-Young, RY'?

c(r) = exp( —be(r))(l + (®)

exp(y(n) f(r)) — 1
AL I R
10 ) yr),
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Figure 4 Comparison between the pair radial distribution functions generated by MD (solid lines) and PY
(squares) at T = 0.722 and p = 0.8442. N = 256 in the MD simulations.

where,
J(r)=1—exp(—ar), ®

The arbitrary parameter, «, has an optimum value, ~ 1/2,!% and it was set to 1/2 in this
study. We have,

o) = exp(—ﬁ¢(r))(l " M) (10)

G

The properties of interest are the internal energy E and the pressure P,
EftkaT) = 372+ 22 | gy giryr, (
B 0

— _ 27'Cp ® 3 47

PV/NkgT =1 3kBT~[0 g(rr’¢’(rydr, 12)
tr' =
oP
-5 ], [wD

= 1/5(0), (13)

=1- 41th. drric(r).

0
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Figure 5 Comparison between the pair radial distribution functions generated by MD (solid lines) and
HNC (squares) at T = 0.722 and p = 0.8442. N = 256 in the MD simulations.
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Figure 6 Comparison between the pair radial distribution functions generated by MD (solid lines) and RY
(squares) at T = 0.722 and p = 0.8442. N = 256 in the MD simulations.
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Figure 7 Comparison between the pair radial distribution functions generated by MD (solid lines) and PY
(squares) at T = 6.0 and p = 1.18. N = 256 in the MD simulations.
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Figure 8 Comparison between the pair radial distribution functions generated by MD (solid lines) and
HNC (squares) at T = 6.0 and p = 1.18. N = 256 in the MD simulations.
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Figure 9 Comparison between the pair radial distribution functions generated by MD (solid lines) and RY
(squares) at T = 6.0 and p = 1.18. N = 256 in the MD simulations.

Alternatively,

xr=1+ 47tpf rh(r)dr. (14)

0

The infinite frequency shear and bulk moduli are expressible in terms of the potential

energy components reduced from the expressions of Zwanzig and Mountain!®!”. For
the infinite-frequency shear modulus, G,
27'Cp2 © d 4 d¢
- udll i 15
G, = pkgT + s L drg(r)dr <r o) (15)
For the infinite-frequency compressional modulus, K _,
2 2np? (™ d/ d¢
K. 3pk,,T—+—P+ 9 L rg(r)r dr<r i (16)

The particles in a Lennard-Jones fluid interact via a pair potential, ¢(r),
¢(r) = 4e((a/r)'? — (a/r)°). (17)
The moduli can be reduced to the following simple expressions for the LJ fluid,

G, = pkyT + p(108®,, + 18D4)/15, (18)
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Figure 10 Comparison between the y(r) obtained by the different closure relations: PY (solid line), HNC
(squares) and RY (triangles), T = 1.06 and p = 0.731.

where @, and @, are the r “!2 and r~ ¢ components of ®, the configurational energy

per particle (E = 3ky T/2 + ®). Similarly for the bulk compressional modulus,
K, = 5pkgT/3 + p(20®,, + 6Og). 19)

2 THE INTEGRAL EQUATION ALGORITHM
The standard Picard/Broyles method was used to solve Eqs. (1)-(3) coupled with a
particular choice of the closure relationship. We will consider the PY closure of Eq. (4)

specifically but the procedure is common to them all. Substituting Eq. (3) in Eq. (1) we
have,

r)=p Jd_r’C(lr — Ny + ()], (20)

Now if we define the following Fourier transforms,

&k) = fc(z)exp(il_c -r)dr

= 4—n fwrc(r)sin(kr)dr, 2n
k Jo
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Figure 11 Comparison between the c(r) obtained by the different closure relations: PY (solid line), HNC
(squares) and RY (triangles), T = 1.06 and p = 0.731.
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Figure 12 Comparison between the y(r) obtained by the different closure relations: PY (solid line), HNC
(squares) and RY (triangles), T = 0.722 and p = 0.8442.
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Figure 13 Comparison between the ¢(r) obtained by the different closure relations: PY (solid line), HNC
(square) and RY (triangles), T = 0.722 and p = 0.8442.
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Figure 14 Comparison between the y(r) obtained by the different closure relations: PY (solid line), HNC
(squares) and RY (triangles), T = 6.0 and p = 1.18.
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Figure 15 Comparison between the c(r) obtained by the different closure relations: PY (solid line), HNC
(squares) and RY (triangles), T = 6.0 and p = 1.18.

and,
k) = f y(r)exp(ik - r)dr
4 @©
= J ry(r)sin(kr)dr, (22)
k Jo
then,
P = plp + péd, (23)

The 9 can be Fourier transformed from k space to r space,

or) = <i> f skpexp(— ik - D)k
2rn

_ ! f " kyysin(kr)dr, (24)
rJo

T 2n

The cycle is completed by substituting the result of Eq. (24) back into the PY closure
relationship,

c(r) = (1 + y(r))exp(—P(r)) — 1), (25)

For HNC Eq. (6) would be used instead and for RY Eq. (8) would be used. The cycle
starting from Eq. (21) is repeated until convergence is reached.
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The technical details are as follows. The distance range covered is partitioned into

N intervals, Ar, r; = iAr. Similarly, for k-space, k; = 2ni/(NAr), therefore r;k; =
2nij/N. All r — and k-dependent functions are evaluated at r and k intervals as follows,

¢; = (1 + y)exp(—B¢) — 1), i < N/2

=0,i>N/2 (26)
ct=c, 2N

4 A N/2—1
¢ = 7;( TS e singk,ry), (28)

j i=1

&2

fo=p I 29
BEPA ey @

Ak N/i2-1
¥ = k; 7, sin(k;r), (30)

2nr, r; le s

where Ak = 2n/(NAr),

¢;=(1 + y)exp(—B¢;) — 1),i < N/2
=0,i> N/2. (31

At high density we facilitate convergence by ‘mixing in’ a certain fraction of the old
direct correlation function, ¢}, with the ‘new’ function, ¢},

¢; = oct + (1 + )}, (32)

with a value of 6 =0.5 being typical. This damps down oscillations between
consecutive iterations. It was found not necessary to resort to the Gillan Method* to
achieve the objectives of this work. The convergence criterion was,

Gi—71)* <e (33)

M=

i=1
choosing ¢ = 10~ *. Equation (27) is now returned to and the cycle to equation (33) is
repeated. Here, N = 1600 and Ar = 0.0250.

It is worth noting that even at the densest states convergence only takes ~ several
minutes on a microcomputer making use of Discrete Fourier Transform (NAG)
library routines. Implementation of the integral equations is significantly easier than
20-30 years ago when these equations were first solved numerically. Computations
were carried out on a VAX 11/780 at the Royal Holloway & Bedford New College
Computer Centre.
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3 THE MD METHOD

The basic technique for simulating the LJ molecules has been described
elsewhere!®'°. The MD simulations were performed on a cubic unit cell of volume V
containing N = 256 Lennard-Jones (LJ) particles of mass, m. The interactions were
truncated at r, = 2.50. A large time step version of the Verlet algorithm was used to
increment the positions of the molecules®®. We use LJ reduced units throughout, e.g.,
kg T/e —» T, and number density, p = No3/V. The moduli are in ¢5 ~>. The temperature
was fixed by the Gaussian isokinetic scheme?’.

4 RESULTS AND DISCUSSION

A summary of the properties from Egs. (11) to (19) is presented in Table 1. These
are compared with simulation and LJ simulation-fitted equation of state predictions
for the same quantities. All states are in the fluid phase. The equation of state internal
energy agrees better than the pressure with the integral equation predictions, as noted
elsewhere’3. Table | reveals that at low to intermediate densities all three closures give
good agreement with ‘exact’ (simulation) values for the elastic moduli. Agreement is
usually within 2-3 %, being slightly better for PY than HNC or RY. Close to the solid
phase boundary these integral equations are severely tested because many-body
correlations start to increase in complexity. (In the low density limit the two-body
distribution function, g(r), suffices to account for all physical properties.) At high
temperature (> T.), the RY closure gives by far the most superior agreement with the
simulation moduli. Tt is significantly better than PY or HNC. The 2-39, agreement
with the simulation values is maintained. The PY underestimates the elastic moduli
by ~10% and the HNC overestimates the moduli by ~10%.

The most severe test of these integral equations is at high density (near the
maximum liquid density) and low temperature (below the critical temperature
(= 1.3)). We note that all closure relationships overestimate the elastic moduli by
5-10%,.

For the first time fluid structure integral equations have been used to predict the
elastic moduli of the Lennard-Jones fluid over an appreciable region of the phase
diagram. Perhaps the main conclusion to come out of these calculations and MD
simulations is that the closure of Rogers and Young provides startlingly good elastic
(and thermodynamic quantities) at high density and temperature. It is reccommended
in studies of the elastic moduli of sterically stabilised dense suspensions where the
colloidal particle interactions are essentially repulsive.
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